「相分離生物学」
白木 賢太郎 氏
Jul 18, 2019
日本物理学会北海道支部講演会
講演題目: 相分離生物学
講 師 : 白木 賢太郎 氏
筑波大学数理物質系
日 時 : 令和元年7月18日 (木) 10:30~12:00
場 所 : 北海道大学工学部アカデミックラウンジ3
共 催 : 第260回エンレイソウの会
要 旨 :
金属−絶縁体転移(MIT)は強相関電子系における最も劇的な現象の一つである。 細胞内にはなぜ高濃度の生体分子があるのだろうか? 何千種類もの化学反応 がある代謝の連続反応がなぜ働いているのか? シグナル伝達とはリン酸化に他 ならないが、リン酸化するとはどういう意味があるのか? さまざまな生物が危 険な疾患を引き起こす可能性のあるプリオンを持っているのはなぜか? 翻訳後 修飾のようなごくわずかな化学構造の変化がどのようにして高次の生命現象につ ながるのだろう? タンパク質は固有の構造を形成して働くというが、高次構造 を形成しないタンパク質は何をしているのだろう? 生物学にはまだ謎が多いが、 このような謎に答えることができる「相分離生物学」という新しい学問分野を紹 介したい。相分離生物学は、状態から見る生物学である。タンパク質や生体高分 子は液-液相分離しやすい性質があり、それが細胞内の機能と結びついて、生物 学的相分離と呼べる状態を作り出しているのである。今回のセミナーでは特に、 細胞内にある物理現象としての生物学的相分離について、討論の時間も少し長め に設けたい。 参考文献:『相分離生物学』白木賢太郎(著)東京化学同人 ISBN-13:978-4807909650
世話人 藤井 修治
(sfujii@eng.hokudai.ac.jp)
北海道大学大学院工学研究院応用物理学部門
「擬1次元導体と金属−絶縁体転移」
上田 寛 氏
Jul 08, 2019
日本物理学会北海道支部講演会
講演題目: 擬1次元導体と金属−絶縁体転移
講 師 : 上田 寛 氏
東京大学名誉教授
日 時 : 令和元年7月8日 (月) 16:30~18:00
場 所 : 北海道大学理学部5号館5-206室
共 催 : 新物質科学研究会、第259回エンレイソウの会
要 旨 :
金属−絶縁体転移(MIT)は強相関電子系における最も劇的な現象の一つである。 本講演では、豊田理研、物性研での研究から、以下の4つの擬1次元物質をとり あげ、様々なMITを紹介する。 Sr7Re4O19:ReO6八面体が頂点酸素共有で作る結合ジグザグ鎖からなる擬1次元 導体で、スピンシングレット形成を伴ったMIT(パイエルス転移?)を示す。 K2Cr8O16:CrO6八面体が稜共有で作るジグザグ鎖4本よりなるトンネル構造を持 ち、強磁性を維持したままMITを示す。混合原子価であるが絶縁体相で電荷分離 ・電荷秩序はなく、その特異なMIT機構についても触れる。 BaFe2S3:FeS4四面体よりなる2本足梯子物質で、反強磁性絶縁体であるが、加 圧により金属に転移し、同時に超伝導(TC=24K)を示す。 β-A0.33V2O5 (A=Li, Na, Ag, Ca, Sr):VO6, VO5多面体よりなる擬1次元構造 をもち、電荷秩序を伴ったMITを示す。A=Li, Na, Ag物質では加圧によりMITは抑 えられ、超伝導を示す。一方、A=Ca, Sr物質では様々な電荷密度波周期をもった 絶縁体相が現われる。
世話人 吉田 紘行
(hyoshida@sci.hokudai.ac.jp)
北海道大学大学院理学研究院物理学部門
「化合物半導体によるメカニカル共振器構造」
山口 浩司 氏
Jun 19, 2019
日本物理学会北海道支部講演会
講演題目: 化合物半導体によるメカニカル共振器構造
講 師 : 山口 浩司 氏
NTT物性科学基礎研究所 / 東北大学 理学研究科
日 時 : 令和元年6月19日 (水) 16:30~18:00
場 所 : 北海道大学工学部物理工学系大会議室 (A1-17)
共 催 : 応用物理学部門学術講演会、応用物理学会北海道支部講演会、第258回エンレイソウの会
要 旨 :
昨今、メカニカル共振器に関する基礎研究が活性化している。メカニカル共振器は タイミングデバイスや高感度センサーなどオンチップで集積可能な低損失素子として 実用化されているが、そこに非線形性や光・スピンなどの新たな自由度を導入するこ とにより、多機能の信号処理技術やこれまでとは異なる原理に基づいたセンサー、さ らには量子情報処理技術への応用などが期待されている。 化合物半導体を用いたメ カニカル共振器は、MBEやMOCVDなどの高純度結晶成長法によって成長した単結晶ヘテ ロ構造から作製され、安定した機械振動特性や圧電特性を活用した電気機械的機能、 さらには光やスピンとの相互作用を用いた光/スピン機械的機能などの優れた特徴を 有する[1]。本講演ではGaAs/AlGaAsヘテロ構造を用いて作製したメカニカル共振器に 関して、これまで我々が進めてきた研究の概要と最近の話題[2-4]について、時間の 許す範囲で紹介する。 [1] H. Yamaguchi, ";GaAs-based micro/nanomechanical resonators" Semicond. Sci. Technol. 32, 103003 (2017) [2] R. Ohta, et al., ";Dynamic control of the coupling between dark and bright excitons with vibrational strain" Phys. Rev. Lett. 120, 267401 (2018) [3] Y. Okazaki, et al., "Dynamical coupling between a nuclear spin ensemble and electromechanical phonons" Nat. Commun. 9, 2993 (2018) [4] M. Kurosu, et al., "On-chip temporal focusing of elastic waves in a phononic crystal waveguide" Nat. Commun. 9, 1331 (2018)
世話人 友田 基信
(mtomoda@eng.hokudai.ac.jp)
北海道大学大学院工学研究院応用物理学部門
「固体および液体酸素の超強磁場誘起相転移」
野村 肇宏 氏
Jun 14, 2019
日本物理学会北海道支部講演会
講演題目: 固体および液体酸素の超強磁場誘起相転移
講 師 : 野村 肇宏 氏
東京大学物性研究所
日 時 : 令和元年6月14日 (金) 16:30~17:30
場 所 : 北海道大学理学部2号館211室
共 催 : 物理コロキウム、第257回エンレイソウの会
要 旨 :
酸素は等核二原子分子でありながらスピン量子数S=1が基底状態となる、特異な 分子磁石である。固体酸素は単原子固体で唯一の反強磁性絶縁体であり、その磁 性は古くから研究者たちの興味を集めた。ファンデルワールス力と反強磁性交換 相互作用の拮抗から、固体および液体酸素の結晶構造(局所構造)は磁気的基底 状態に強く依存する。 ”外部磁場によって磁気構造を制御した際に結晶構造がどう変化するか”という 問題は一見古典的だが、超強磁場を必要とすることから最近まで実験的検証は無 かった。 我々は一巻きコイル法を用いた100-200 T領域の物性測定によって固体酸素の磁 場誘起相を発見し、その相図を明らかにすることに成功した[1,2]。 また液体酸素においても同様の液体-液体相転移の存在を示唆する結果を得た。 本コロキウムでは、酸素の強磁場研究の歴史を振り返り、今後の展開について議 論する。 [1] T. Nomura, Y. H. Matsuda, S. Takeyama, A. Matsuo, K. Kindo, J. L. Her, T. C. Kobayashi, Phys. Rev. Lett. 112, 247201 (2014). [2] T. Nomura, Y. H. Matsuda, T. C. Kobayashi, Phys. Rev. B 96, 054439 (2017).
世話人 柳澤 達也
(tatsuya@phys.sci.hokudai.ac.jp)
北海道大学大学院理学研究院物理学部門
「Nanoparticles in the ionosphere of Earth and other solar system objects」
Prof. Ingrid Mann
Jun 05, 2019
日本物理学会北海道支部講演会
講演題目: Nanoparticles in the ionosphere of Earth and other solar system objects
講 師 : Prof. Ingrid Mann
UiT the Arctic University of Norway, Tromso, Norway
日 時 : 令和元年6月5日 (水) 16:30~18:00
場 所 : 北海道大学理学部 8号館 2階 コスモスタジオ
共 催 : 宇宙理学セミナー
要 旨 :
The upper atmosphere at the transition to space contains small nanometer-sized dust particles. The particles originate from the entry of the cosmic dust into the atmosphere, a process where a large fraction of material evaporates and then re-condenses; at low temperature water ice condenses on the dust. These dust/ice particles are often electrically charged and interact with the other charged components of the atmosphere that at this altitude is partially ionized. Through its charge the dust also plays a role in atmospheric chemistry. The dust particles can be observed with rocket measurements, optically and with radar. Charged nanodust, below the size that is observed optically leads to the formation of strong radar echoes (PMSE, for Polar Mesospheric Summer Echoes). The dust is carried in the surrounding neutral atmosphere which is governed by solar radiative forcing from above and from below by atmospheric waves, notably gravity, tidal, and planetary waves. They shape the observed PMSE wavy structures. PMSE are observed independent from weather conditions, which makes them a good target for long-term studies. Advanced observations will be possible with the multi-static phased array radar EISCAT_3D that is at present under construction in Norther Europe (cf. McCrea et al. 2015). At the same time, the ionosphere can be considered a dusty plasma where the dust participates and gives rise to plasma collective effects. The presence of charged dust influences the charge balance. In many cases, the dust component is inferred from reduced electron abundance. This is observed from sounding rockets and at other solar system objects with Langmuir probes from spacecraft. A key issue for understanding observational data are the interactions and charging rates and for nanodust particles (Mann et al. 2014) those are different from larger particles. McCrea, I., et al. (2015) Prog. Earth Planet. Sci. 2, 21, doi:10.1186/s40645-015-0051-8. Mann, I., Meyer?Vernet, N., Czechowski, A. (2014) Physics Reports 536, 1-39.
世話人 倉本 圭
(keikei@ep.sci.hokudai.ac.jp)
北海道大学大学院理学研究院地球惑星科学部門